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» A lattice L C R" is a closed discrete subgroup of finite
covolume, i.e.
L=Ze D ---DZe,

where ey, ..., e, are linearly independent vectors.

» A periodic set A C R" is a closed discrete subset which is
invariant under translations by a lattice L :

AN+ L=A

& 3 a lattice L and vectors ty, ..., t, in R", pairwise
incongruent mod L, such that

Ot—i—L

In that case we say that A is m-periodic.



A given periodic set A admits infinitely many period lattices and
representations A = |JI"; (¢ + L), in which the number m = |A/L|
varies, but not the point density :

m : :
po(N) = "number of points per unit volume of space".

vdet L

For instance one can replace L by any of its sublattice L’ and
obtain a representation as a union of m[L : L'] translates of L’




All period lattices are contained in
Lnax = {veER"|v+A=A}.
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A= |J (x4 Lnax)

XE/\/Lmax
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Local maxima of packing density

» Lattice packings : Voronoi theory (1907).

e Local maxima sit at the vertices of the Ryshkov polyhedron.
e Algorithm to enumerate the vertices.

» Periodic packings :
e Schiirmann (2004) : characterization of the local maxima.
e Andreanov-Kallus(2017) : refinement in the case of 2-periodic
sets + algorithm to enumerate the vertices.



Energy of periodic sets

Reminder : the energy of a finite configuration of points C in R”
w.r.t. a potential f is given by

EFC) == 3 F(x—yP)

|C| x,y€C,xF£y



Energy of periodic sets

Reminder : the energy of a finite configuration of points C in R”
w.r.t. a potential f is given by

EFC) == 3 F(x—yP)

|C| x,y€C,xF£y

Extending this definition of the energy to a general (infinite,
unbounded) collection A of points in the Euclidean space, entails
convergence problems.



Energy of periodic sets

Reminder : the energy of a finite configuration of points C in R”
w.r.t. a potential f is given by

EFC) == 3 F(x—yP)

|C| x,y€C,xF£y

Extending this definition of the energy to a general (infinite,
unbounded) collection A of points in the Euclidean space, entails
convergence problems.
A natural idea is to set

E(f,N\) := lim E(f,Ag)

R—o0

where Ag := AN B(0, R)



Energy of periodic sets

Reminder : the energy of a finite configuration of points C in R”
w.r.t. a potential f is given by

EFC) == 3 F(x—yP)

|C| x,y€C,xF£y

Extending this definition of the energy to a general (infinite,
unbounded) collection A of points in the Euclidean space, entails
convergence problems.
A natural idea is to set

E(f,N\) := lim E(f,Ag)

R—o0

where Ag := AN B(0, R)
~ well-defined if A is periodic.



Energy of periodic sets

Cohn and Kumar (2007) define the energy of a m-periodic set
N =", (t; + L) with respect to a potential f as

Z > f(lwt—t?)

1<I_/<m weL

wtj—t;70
1« )
=SS Al uP)
i=1 ueN\{t;}

Fact : for a rapidly decreasing f, this agrees with the previous
definition, namely lim E(f,Ag) exists and equals E(f,A).

R—00

Recall : Ag := AN B(0,R).



Comments
The definition of the energy as
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Comments
The definition of the energy as

EFA) = lm —— S F(x—yP)

e |/\R| X,y ENRXFy
involves only the set
n/\_/\vl = {X—y’X€A7y€/\}

(no reference to a period lattice)

» If Ais a lattice (m = 1), then A — A = A (group structure).
» For m > 1, we lose the group structure.
» Not too bad if m=2:
A=LU(t+L) = AN-A=AU(-A).
» Definitely more complicated if m > 2.
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Automorphisms

The natural automorphisms to consider for a periodic set A are its
affine isometries

[somA D L.

Aut A := Isom A/ L pax

If 0 € A, then

Aut A D Autg A = {¢ € Aut Lok | (A) = A}



Universal optimality

AN=UL(t+0), E(f.N=5 > X f(w+t-1)

1<ij<m wel
W—‘rtj—f,'?éo

For the potential f, we restrict to completely monotonic functions,
that is, real-valued, C* on (0, c0), and such that

Vk >0,Vx € (0,00), (=1)*fW(x)>0.

The class of completely monotonic functions contains all the
“reasonable functions” in the context of energy minimization, e.g. :

» inverse power laws ps(r) = r—° with s > 0,

» Gaussian potentials f.(r) = e=" with ¢ > 0
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AN=UL(t+0), E(f.N=5 > X f(w+t-1)

1<ij<m wel
W—‘rtj—f,'?éo

For the potential f, we restrict to completely monotonic functions,
that is, real-valued, C* on (0, c0), and such that

Vk >0,Vx € (0,00), (=1)*fW(x)>0.

The class of completely monotonic functions contains all the
“reasonable functions” in the context of energy minimization, e.g. :

» inverse power laws ps(r) = r—° with s > 0,
» Gaussian potentials f.(r) = e=" with ¢ > 0

Definition

A is universally optimal if it minimizes E(f.,\) for any ¢ > 0.



Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices Ay, Dy, Eg and Ny are universally optimal.

» true locally when restricted to /attice configurations (Sarnak
and Strombergsson 2006).



Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices Ay, Dy, Eg and Ny are universally optimal.

» true locally when restricted to /attice configurations (Sarnak
and Strombergsson 2006).

» extended to periodic configurations (C., Schiirmann, 2012).
More precisely : a lattice, all the shells of which are 4-designs,
is locally f.-optimal among periodic sets for big enough ¢ (+
explicit treshold).

All known examples of universally optimal (proven or
conjectured) lattices share this rather strong property. Can
one weaken this condition 7



Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices Ay, Dy, Eg and Ny are universally optimal.

» true locally when restricted to /attice configurations (Sarnak
and Strombergsson 2006).

» extended to periodic configurations (C., Schiirmann, 2012).
More precisely : a lattice, all the shells of which are 4-designs,
is locally f.-optimal among periodic sets for big enough ¢ (+
explicit treshold).

All known examples of universally optimal (proven or
conjectured) lattices share this rather strong property. Can
one weaken this condition 7

» The conjecture has been proved recently for Eg and Ay4 by
Cohn, Kumar, Miller, Radchenko and Viazovska.
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A non lattice example : D;.

D,,:{x:(xl,...,xn)GZ”|Zx,-EO mod2}

D} =D, U (e+ D,) where e = (

1
757'” 75)

N~

It is a lattice if n is even, otherwise a 2-periodic set.

Cohn, Kumar, Schiirmann : experimental study suggest that Dy is
universally optimal.
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Local deformations

P = the set of m-periodic sets in R"
P = |JPnm
m>1

Each P,, is a manifold, and for each fixed potential f, one has to
study the local optima of a function

AN— E(f,N)
~ gradient, Hessian.

We say that A is f-critical if the gradient of the above map
vanishes at A.
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of degree < t one has
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Necessary conditions for universal optimality
Let S be a sphere in R” centered at 0.

Definition

A finite set D C S is a weighted spherical design of strength t if
there exists a function v : D — (0, 00) such that for all polynomial
of degree < t one has

1 1
T Jy 0 = 3y 2 P

where v(D) = v(x).

If t =1 and v = 1, this reduces to the condition that
o

which we refer to in the sequel as D being a balanced set.
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First order condition (gradient)
For x € A and r > 0 we define

A(r) = {y—x||ly — x| =r, y € A} "pointed shell"
and we set A(r) = [J,cp Ax(r).
Theorem (C., Schirmann (2017))

A periodic set \ in R" is f.-critical for all ¢ > 0 if and only if the
following two condlitions are satisfied :

® All non-empty pointed shells N\, (r) for x € N and r > 0 are
balanced.

@® All non-empty shells N(r) for r > 0 are weighted spherical
2-designs with respect to the following weight v :

vw) = i | w € A},
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Proposition

If the automorphism group of N acts R-irreducibly, then N\ is
f.-critical for any ¢ > 0.

Proof.

® A weighted set (D, ) on a sphere of radius r in R" is a
weighted spherical 2-design if and only if

Z v(x)x =0 and Z v(x)xxt* =cl,

x€D x€D

for some constant c.

® A real representation of a finite group G is irreducible if and
only if dimg(Sym?V)¢ = 1.

® Apply thisto D = G - xy for any xg :

* R(>.,cpv(x)x)is G-stable = >~ 5 v(x)x = 0.
o Y epV(X)xxt € (Sym?V)C = 3" o v(x)xxt = clg.
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Second order condition (Hessian)

hess E(f.,\) = ZI c,r) —er®

r>0
where /(c, r) is a complicated expression involving all the elements
of A(r)
~ want to show that all the /(c, r) are > 0 for big enough c.

» m=1: C., Schiirmann (2012)

» For general m-periodic sets, the local analysis seems out of

reach.
» For m = 2 the problem subdivides into 3 parts :

@ "Purely translational part".
® "Mixed part".
© '"Lattice part".
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In the case of D}, we obtain :
Theorem (C., Schiirmann (2017))

Let n be an odd integer > 9. Then there exists a constant c, such
that D} is locally f.-optimal for any ¢ > c,.

In the computation of the "lattice part" of the Hessian for Dy}, one
has to estimate the quantities

2= 3 (),

2r4|/\(r)].

Fact : the a, are the Fourier coefficients of a certain cusp form
n
of weight 5 +4

3

Set a, :=

is small

SN
r*|A(r)]
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How to go further, and what is so special with n=9 ?

Theorem

Let n be an odd integer > 9. Then there exists a constant c, such
that D is locally f.-optimal for any ¢ > c,.

@ get explicit ¢,, as small as possible.

@® use formal duality (if any...) and "Poisson summation
formula" to exchange c and 1/c.

For n = 9, step @ requires the actual computation of a basis for a
certain space of cusp forms of weight 9/2 and the expansion of a
certain theta series with spherical coefficients on this basis ~~
doable, in principle (hard).

As for step @ it does not really make sens in general, since there is
no Poisson formula...but Dy is formally self-dual !
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