Energy minimization for periodic sets in Euclidean spaces

Renaud Coulangeon, joint work with Achill Schürmann

April 12, 2018

$$L = \mathbf{Z}e_1 \oplus \cdots \oplus \mathbf{Z}e_n$$

where e_1, \ldots, e_n are linearly independent vectors.

$$L = \mathbf{Z}e_1 \oplus \cdots \oplus \mathbf{Z}e_n$$

where e_1, \ldots, e_n are linearly independent vectors.

▶ A **periodic set** $\Lambda \subset \mathbb{R}^n$ is a closed discrete subset which is invariant under translations by a lattice L:

$$\Lambda + L = \Lambda$$
.

$$L = \mathbf{Z}e_1 \oplus \cdots \oplus \mathbf{Z}e_n$$

where e_1, \ldots, e_n are linearly independent vectors.

▶ A **periodic set** $\Lambda \subset \mathbb{R}^n$ is a closed discrete subset which is invariant under translations by a lattice L:

$$\Lambda + L = \Lambda$$
.

$$L = \mathbf{Z}e_1 \oplus \cdots \oplus \mathbf{Z}e_n$$

where e_1, \ldots, e_n are linearly independent vectors.

▶ A **periodic set** $\Lambda \subset \mathbb{R}^n$ is a closed discrete subset which is invariant under translations by a lattice L:

$$\Lambda + L = \Lambda$$
.

 $\Leftrightarrow \exists$ a lattice L and vectors t_1, \ldots, t_m in \mathbb{R}^n , pairwise incongruent mod L, such that

$$\Lambda = \bigcup_{i=1}^{m} (t_i + L)$$

In that case we say that Λ is m-periodic.

A given periodic set Λ admits infinitely many period lattices and representations $\Lambda = \bigcup_{i=1}^{m} (t_i + L)$, in which the number $m = |\Lambda/L|$ varies, but not the *point density*:

$$p\delta(\Lambda) := \frac{m}{\sqrt{\det L}}$$
 "number of points per unit volume of space".

For instance one can replace L by any of its sublattice L' and obtain a representation as a union of m[L:L'] translates of L'

All period lattices are contained in

$$L_{\max} := \{ v \in \mathbb{R}^n \mid v + \Lambda = \Lambda \}.$$

→ "primitive representation"

$$\Lambda = \bigcup_{x \in \Lambda/L_{\mathsf{max}}} (x + L_{\mathsf{max}})$$

as a union of $m(\Lambda) := |\Lambda/L_{max}|$ translates of L_{max} .

All period lattices are contained in

$$L_{\max} := \{ v \in \mathbb{R}^n \mid v + \Lambda = \Lambda \}.$$

→ "primitive representation"

$$\Lambda = \bigcup_{x \in \Lambda/L_{\mathsf{max}}} (x + L_{\mathsf{max}})$$

as a union of $m(\Lambda) := |\Lambda/L_{max}|$ translates of L_{max} .

Local maxima of packing density

- ► Lattice packings : Voronoi theory (1907).
 - Local maxima sit at the vertices of the Ryshkov polyhedron.
 - Algorithm to enumerate the vertices.

Periodic packings :

- Schürmann (2004): characterization of the local maxima.
- Andreanov-Kallus(2017) : refinement in the case of 2-periodic sets + algorithm to enumerate the vertices.

Reminder: the energy of a finite configuration of points C in \mathbb{R}^n w.r.t. a potential f is given by

$$E(f,C) = \frac{1}{|C|} \sum_{\substack{x,y \in C, x \neq y}} f(|x-y|^2).$$

Reminder: the energy of a finite configuration of points C in \mathbb{R}^n w.r.t. a potential f is given by

$$E(f,C) = \frac{1}{|C|} \sum_{\substack{X,Y \in C, X \neq Y}} f(|X-Y|^2).$$

Extending this definition of the energy to a general (infinite, unbounded) collection Λ of points in the Euclidean space, entails convergence problems.

Reminder: the energy of a finite configuration of points C in \mathbb{R}^n w.r.t. a potential f is given by

$$E(f,C) = \frac{1}{|C|} \sum_{x,y \in C, x \neq y} f(|x-y|^2).$$

Extending this definition of the energy to a general (infinite, unbounded) collection Λ of points in the Euclidean space, entails convergence problems.

A natural idea is to set

$$E(f,\Lambda) := \lim_{R \to \infty} E(f,\Lambda_R)$$

where $\Lambda_R := \Lambda \cap B(0,R)$

Reminder: the energy of a finite configuration of points C in \mathbb{R}^n w.r.t. a potential f is given by

$$E(f,C) = \frac{1}{|C|} \sum_{x,y \in C, x \neq y} f(|x-y|^2).$$

Extending this definition of the energy to a general (infinite, unbounded) collection Λ of points in the Euclidean space, entails convergence problems.

A natural idea is to set

$$E(f,\Lambda) := \lim_{R \to \infty} E(f,\Lambda_R)$$

where $\Lambda_R := \Lambda \cap B(0, R)$ \rightsquigarrow well-defined if Λ is periodic.

Cohn and Kumar (2007) define the energy of a *m*-periodic set $\Lambda = \bigcup_{i=1}^{m} (t_i + L)$ with respect to a potential f as

$$E(f, \Lambda) = rac{1}{m} \sum_{1 \le i, j \le m} \sum_{\substack{w \in L \\ w + t_j - t_i \ne 0}} f(|w + t_j - t_i|^2)$$

$$= rac{1}{m} \sum_{i=1}^{m} \sum_{u \in \Lambda \setminus \{t_i\}} f(|u - t_i|^2)$$

Fact: for a rapidly decreasing f, this agrees with the previous definition, namely $\lim_{R\to\infty} E(f,\Lambda_R)$ exists and equals $E(f,\Lambda)$.

Recall : $\Lambda_R := \Lambda \cap B(0, R)$.

The definition of the energy as

$$E(f,\Lambda) = \lim_{R \to \infty} \frac{1}{|\Lambda_R|} \sum_{x,y \in \Lambda_R, x \neq y} f(|x-y|^2)$$

involves only the set

$$"\Lambda - \Lambda" := \{x - y, x \in \Lambda, y \in \Lambda\}.$$

(no reference to a period lattice)

▶ If Λ is a lattice (m = 1), then $\Lambda - \Lambda = \Lambda$ (group structure).

The definition of the energy as

$$E(f,\Lambda) = \lim_{R \to \infty} \frac{1}{|\Lambda_R|} \sum_{x,y \in \Lambda_R, x \neq y} f(|x-y|^2)$$

involves only the set

$$"\Lambda - \Lambda" := \{x - y, x \in \Lambda, y \in \Lambda\}.$$

(no reference to a period lattice)

- ▶ If Λ is a lattice (m = 1), then $\Lambda \Lambda = \Lambda$ (group structure).
- ▶ For m > 1, we lose the group structure.

The definition of the energy as

$$E(f,\Lambda) = \lim_{R \to \infty} \frac{1}{|\Lambda_R|} \sum_{x,y \in \Lambda_R, x \neq y} f(|x-y|^2)$$

involves only the set

$$"\Lambda - \Lambda" := \{x - y, x \in \Lambda, y \in \Lambda\}.$$

(no reference to a period lattice)

- ▶ If Λ is a lattice (m = 1), then $\Lambda \Lambda = \Lambda$ (group structure).
- ▶ For m > 1, we lose the group structure.
- ▶ Not too bad if m = 2:

$$\Lambda = L \cup (t + L) \quad \Rightarrow \quad \Lambda - \Lambda = \Lambda \cup (-\Lambda).$$

The definition of the energy as

$$E(f,\Lambda) = \lim_{R \to \infty} \frac{1}{|\Lambda_R|} \sum_{x,y \in \Lambda_R, x \neq y} f(|x-y|^2)$$

involves only the set

$$"\Lambda - \Lambda" := \{x - y, x \in \Lambda, y \in \Lambda\}.$$

(no reference to a period lattice)

- ▶ If Λ is a lattice (m = 1), then $\Lambda \Lambda = \Lambda$ (group structure).
- ▶ For m > 1, we lose the group structure.
- ▶ Not too bad if m = 2:

$$\Lambda = L \cup (t + L) \Rightarrow \Lambda - \Lambda = \Lambda \cup (-\Lambda).$$

▶ Definitely more complicated if m > 2.

The natural automorphisms to consider for a periodic set Λ are its affine isometries

The natural automorphisms to consider for a periodic set Λ are its affine isometries

Isom Λ

The natural automorphisms to consider for a periodic set Λ are its affine isometries

Isom $\Lambda \supset L_{max}$

The natural automorphisms to consider for a periodic set Λ are its affine isometries

Isom
$$\Lambda \supset L_{max}$$

Aut
$$\Lambda := \operatorname{Isom} \Lambda / L_{max}$$

The natural automorphisms to consider for a periodic set Λ are its affine isometries

Isom
$$\Lambda \supset L_{max}$$

$$\operatorname{\mathsf{Aut}} \Lambda := \operatorname{\mathsf{Isom}} \Lambda / L_{\mathit{max}}$$

If $0 \in \Lambda$, then

$$\operatorname{Aut} \Lambda \supset \operatorname{Aut}_0 \Lambda = \{ \varphi \in \operatorname{Aut} L_{\max} \mid \varphi(\Lambda) = \Lambda \}.$$

Universal optimality

$$\Lambda = \bigcup_{i=1}^{m} (t_i + L), \ E(f, \Lambda) = \frac{1}{m} \sum_{1 \leq i, j \leq m} \sum_{\substack{w \in L \\ w + t_j - t_i \neq 0}} f(|w + t_j - t_i|^2)$$

For the potential f, we restrict to *completely monotonic functions*, that is, real-valued, C^{∞} on $(0, \infty)$, and such that

$$\forall k \geq 0, \forall x \in (0, \infty), \quad (-1)^k f^{(k)}(x) \geq 0.$$

The class of completely monotonic functions contains all the "reasonable functions" in the context of energy minimization, e.g. :

- inverse power laws $p_s(r) = r^{-s}$ with s > 0,
- ▶ Gaussian potentials $f_c(r) = e^{-cr}$ with c > 0

Universal optimality

$$\Lambda = \bigcup_{i=1}^{m} (t_i + L), \ E(f, \Lambda) = \frac{1}{m} \sum_{1 \leq i, j \leq m} \sum_{\substack{w \in L \\ w + t_j - t_i \neq 0}} f(|w + t_j - t_i|^2)$$

For the potential f, we restrict to *completely monotonic functions*, that is, real-valued, C^{∞} on $(0, \infty)$, and such that

$$\forall k \ge 0, \forall x \in (0, \infty), \quad (-1)^k f^{(k)}(x) \ge 0.$$

The class of completely monotonic functions contains all the "reasonable functions" in the context of energy minimization, e.g.:

- inverse power laws $p_s(r) = r^{-s}$ with s > 0,
- ▶ Gaussian potentials $f_c(r) = e^{-cr}$ with c > 0

Definition

 Λ is universally optimal if it minimizes $E(f_c, \Lambda)$ for any c > 0.

Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices A_2 , D_4 , E_8 and Λ_{24} are universally optimal.

▶ true locally when restricted to *lattice* configurations (Sarnak and Strömbergsson 2006).

Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices A_2 , D_4 , E_8 and Λ_{24} are universally optimal.

- ▶ true locally when restricted to *lattice* configurations (Sarnak and Strömbergsson 2006).
- extended to *periodic* configurations (C., Schürmann, 2012). More precisely: a lattice, all the shells of which are 4-designs, is locally f_c -optimal among periodic sets for big enough c (+ explicit treshold).

All known examples of universally optimal (proven or conjectured) lattices share this rather strong property. Can one weaken this condition?

Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices A_2 , D_4 , E_8 and Λ_{24} are universally optimal.

- ▶ true locally when restricted to *lattice* configurations (Sarnak and Strömbergsson 2006).
- extended to *periodic* configurations (C., Schürmann, 2012). More precisely: a lattice, all the shells of which are 4-designs, is locally f_c -optimal among periodic sets for big enough c (+ explicit treshold).
 - All known examples of universally optimal (proven or conjectured) lattices share this rather strong property. Can one weaken this condition ?
- ► The conjecture has been proved recently for E_8 and Λ_{24} by Cohn, Kumar, Miller, Radchenko and Viazovska.

$$D_n = \left\{ x = (x_1, \dots, x_n) \in \mathbf{Z}^n \mid \sum x_i \equiv 0 \mod 2 \right\}$$

$$D_n = \left\{ x = (x_1, \dots, x_n) \in \mathbf{Z}^n \mid \sum x_i \equiv 0 \mod 2 \right\}$$

$$D_n^+ = D_n \cup (e + D_n) \text{ where } e = (\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}).$$

$$D_n=\left\{x=(x_1,\ldots,x_n)\in \mathbf{Z}^n\mid \sum x_i\equiv 0\mod 2
ight\}$$
 $D_n^+=D_n\cup(e+D_n) ext{ where } e=(rac{1}{2},rac{1}{2},\cdots,rac{1}{2}).$

It is a lattice if n is even, otherwise a 2-periodic set.

$$D_n=\left\{x=(x_1,\ldots,x_n)\in \mathbf{Z}^n\mid \sum x_i\equiv 0\mod 2
ight\}$$
 $D_n^+=D_n\cup(e+D_n)$ where $e=(rac{1}{2},rac{1}{2},\cdots,rac{1}{2}).$

It is a lattice if n is even, otherwise a 2-periodic set.

Cohn, Kumar, Schürmann : experimental study suggest that D_9^+ is universally optimal.

Purely translational deformation

Purely lattice deformation

change m

 \mathcal{P}_m = the set of *m*-periodic sets in \mathbb{R}^n

$$\mathcal{P}_m$$
 = the set of *m*-periodic sets in \mathbb{R}^n
 \mathcal{P} = $\bigcup_{m\geq 1} \mathcal{P}_m$

$$\mathcal{P}_m$$
 = the set of *m*-periodic sets in \mathbb{R}^n
 \mathcal{P} = $\bigcup_{m>1} \mathcal{P}_m$

Each \mathcal{P}_m is a manifold, and for each fixed potential f, one has to study the local optima of a function

$$\Lambda \mapsto E(f,\Lambda)$$

$$\mathcal{P}_m$$
 = the set of *m*-periodic sets in \mathbb{R}^n
 \mathcal{P} = $\bigcup_{m>1} \mathcal{P}_m$

Each \mathcal{P}_m is a manifold, and for each fixed potential f, one has to study the local optima of a function

$$\Lambda \mapsto E(f,\Lambda)$$

→ gradient, Hessian.

$$\mathcal{P}_m$$
 = the set of *m*-periodic sets in \mathbb{R}^n
 \mathcal{P} = $\bigcup_{m\geq 1} \mathcal{P}_m$

Each \mathcal{P}_m is a manifold, and for each fixed potential f, one has to study the local optima of a function

$$\Lambda \mapsto E(f,\Lambda)$$

→ gradient, Hessian.

We say that Λ is f-critical if the gradient of the above map vanishes at Λ .

Necessary conditions for universal optimality

Let S be a sphere in \mathbb{R}^n centered at 0.

Necessary conditions for universal optimality

Let S be a sphere in \mathbb{R}^n centered at 0.

Definition

A finite set $\mathcal{D} \subset S$ is a weighted spherical design of strength t if there exists a function $\nu: \mathcal{D} \to (0, \infty)$ such that for all polynomial of degree $\leq t$ one has

$$\frac{1}{\operatorname{Vol}(S)}\int_{S}P(x)dx=\frac{1}{\nu(\mathcal{D})}\sum_{x\in\mathcal{D}}\nu(x)P(x).$$

where $\nu(\mathcal{D}) = \sum_{x \in \mathcal{D}} \nu(x)$.

Necessary conditions for universal optimality

Let S be a sphere in \mathbb{R}^n centered at 0.

Definition

A finite set $\mathcal{D} \subset S$ is a weighted spherical design of strength t if there exists a function $\nu: \mathcal{D} \to (0, \infty)$ such that for all polynomial of degree $\leq t$ one has

$$\frac{1}{\operatorname{Vol}(S)}\int_{S}P(x)dx=\frac{1}{\nu(\mathcal{D})}\sum_{x\in\mathcal{D}}\nu(x)P(x).$$

where
$$\nu(\mathcal{D}) = \sum_{x \in \mathcal{D}} \nu(x)$$
.

If t=1 and $\nu\equiv 1$, this reduces to the condition that

$$\sum_{x \in \mathcal{D}} x = 0$$

which we refer to in the sequel as \mathcal{D} being a balanced set.

First order condition (gradient)

For $x \in \Lambda$ and r > 0 we define

$$\Lambda_x(r) = \{y - x \mid ||y - x|| = r, y \in \Lambda\}$$
 "pointed shell"

and we set $\Lambda(r) = \bigcup_{x \in \Lambda} \Lambda_x(r)$.

First order condition (gradient)

For $x \in \Lambda$ and r > 0 we define

$$\Lambda_x(r) = \{y - x \mid ||y - x|| = r, y \in \Lambda\}$$
 "pointed shell"

and we set $\Lambda(r) = \bigcup_{x \in \Lambda} \Lambda_x(r)$.

Theorem (C., Schürmann (2017))

A periodic set Λ in \mathbb{R}^n is f_c -critical for all c>0 if and only if the following two conditions are satisfied :

- **1** All non-empty pointed shells $\Lambda_x(r)$ for $x \in \Lambda$ and r > 0 are balanced.
- **2** All non-empty shells $\Lambda(r)$ for r>0 are weighted spherical 2-designs with respect to the following weight ν :

$$\nu(w) = \frac{1}{m} \left| \left\{ i \mid w \in \Lambda_{t_i} \right\} \right|.$$

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

Proof.

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

Proof.

• A weighted set (\mathcal{D}, ν) on a sphere of radius r in \mathbb{R}^n is a weighted spherical 2-design if and only if

$$\sum_{x \in \mathcal{D}} \nu(x)x = 0 \text{ and } \sum_{x \in \mathcal{D}} \nu(x)xx^t = c I_n$$

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

Proof.

• A weighted set (\mathcal{D}, ν) on a sphere of radius r in \mathbb{R}^n is a weighted spherical 2-design if and only if

$$\sum_{x \in \mathcal{D}} \nu(x) x = 0 \text{ and } \sum_{x \in \mathcal{D}} \nu(x) x x^t = c I_n$$

for some constant c.

2 A real representation of a finite group G is irreducible if and only if $\dim_{\mathbf{R}}(\operatorname{Sym}^2 V)^G = 1$.

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

Proof.

1 A weighted set (\mathcal{D}, ν) on a sphere of radius r in \mathbb{R}^n is a weighted spherical 2-design if and only if

$$\sum_{x \in \mathcal{D}} \nu(x) x = 0 \text{ and } \sum_{x \in \mathcal{D}} \nu(x) x x^t = c I_n$$

- **2** A real representation of a finite group G is irreducible if and only if $\dim_{\mathbb{R}}(\operatorname{Sym}^2 V)^G = 1$.
- **3** Apply this to $\mathcal{D} = G \cdot x_0$ for any x_0 :

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

Proof.

• A weighted set (\mathcal{D}, ν) on a sphere of radius r in \mathbb{R}^n is a weighted spherical 2-design if and only if

$$\sum_{x \in \mathcal{D}} \nu(x) x = 0 \text{ and } \sum_{x \in \mathcal{D}} \nu(x) x x^t = c I_n$$

- **2** A real representation of a finite group G is irreducible if and only if $\dim_{\mathbb{R}}(\operatorname{Sym}^2 V)^G = 1$.
- **3** Apply this to $\mathcal{D} = G \cdot x_0$ for any x_0 :
 - $R(\sum_{x \in \mathcal{D}} \nu(x)x)$ is G-stable $\Rightarrow \sum_{x \in \mathcal{D}} \nu(x)x = 0$.

If the automorphism group of Λ acts R-irreducibly, then Λ is f_c -critical for any c>0.

Proof.

1 A weighted set (\mathcal{D}, ν) on a sphere of radius r in \mathbb{R}^n is a weighted spherical 2-design if and only if

$$\sum_{x \in \mathcal{D}} \nu(x)x = 0 \text{ and } \sum_{x \in \mathcal{D}} \nu(x)xx^t = c I_n$$

- **2** A real representation of a finite group G is irreducible if and only if $\dim_{\mathbb{R}}(\operatorname{Sym}^2 V)^G = 1$.
- **3** Apply this to $\mathcal{D} = G \cdot x_0$ for any x_0 :
 - $R(\sum_{x \in \mathcal{D}} \nu(x)x)$ is G-stable $\Rightarrow \sum_{x \in \mathcal{D}} \nu(x)x = 0$.
 - $\sum_{x \in \mathcal{D}} \nu(x) x x^t \in (\operatorname{Sym}^2 V)^G \Rightarrow \sum_{x \in \mathcal{D}} \nu(x) x x^t = c I_d$.

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r>0} I(c, r) e^{-cr^2}$$

hess
$$E(f_c, \Lambda) = \sum_{r>0} I(c, r)e^{-cr^2}$$

where I(c, r) is a complicated expression involving all the elements of $\Lambda(r)$

 \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r > 0} I(c, r) e^{-cr^2}$$

- \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.
 - ► *m* = 1 : C., Schürmann (2012)

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r>0} I(c, r) e^{-cr^2}$$

- \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.
 - ► *m* = 1 : C., Schürmann (2012)
 - ► For general *m*-periodic sets, the local analysis seems out of reach.

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r>0} I(c, r) e^{-cr^2}$$

- \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.
 - ► *m* = 1 : C., Schürmann (2012)
 - ► For general *m*-periodic sets, the local analysis seems out of reach.
 - For m = 2 the problem subdivides into 3 parts :

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r>0} I(c, r) e^{-cr^2}$$

- \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.
 - ► *m* = 1 : C., Schürmann (2012)
 - ► For general *m*-periodic sets, the local analysis seems out of reach.
 - For m = 2 the problem subdivides into 3 parts :
 - "Purely translational part".

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r>0} I(c, r) e^{-cr^2}$$

- \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.
 - ► *m* = 1 : C., Schürmann (2012)
 - ► For general *m*-periodic sets, the local analysis seems out of reach.
 - For m = 2 the problem subdivides into 3 parts :
 - 1 "Purely translational part".
 - 2 "Mixed part".

$$\operatorname{hess} E(f_c, \Lambda) = \sum_{r>0} I(c, r) e^{-cr^2}$$

- \rightsquigarrow want to show that all the I(c,r) are > 0 for big enough c.
 - ► *m* = 1 : C., Schürmann (2012)
 - ► For general *m*-periodic sets, the local analysis seems out of reach.
 - For m = 2 the problem subdivides into 3 parts :
 - "Purely translational part".
 - 2 "Mixed part".
 - 3 "Lattice part".

In the case of D_n^+ , we obtain :

Theorem (C., Schürmann (2017))

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c > c_n$.

In the computation of the "lattice part" of the Hessian for ${\cal D}_N^+$, one has to estimate the quantities

$$Z_r = \sum_{w \in \Lambda(r)} \left(\sum_{i=1}^n w_i^4 \right).$$

In the case of D_n^+ , we obtain :

Theorem (C., Schürmann (2017))

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c > c_n$.

In the computation of the "lattice part" of the Hessian for ${\cal D}_N^+$, one has to estimate the quantities

$$Z_r = \sum_{w \in \Lambda(r)} \left(\sum_{i=1}^n w_i^4 \right).$$

Set
$$a_r := Z_r - \frac{3}{n+2} r^4 |\Lambda(r)|$$
.

Fact: the a_r are the Fourier coefficients of a certain cusp form of weight $\frac{n}{2} + 4$

In the case of D_n^+ , we obtain :

Theorem (C., Schürmann (2017))

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c > c_n$.

In the computation of the "lattice part" of the Hessian for ${\cal D}_N^+$, one has to estimate the quantities

$$Z_r = \sum_{w \in \Lambda(r)} \left(\sum_{i=1}^n w_i^4 \right).$$

Set $a_r := Z_r - \frac{3}{n+2} r^4 |\Lambda(r)|$.

Fact: the a_r are the Fourier coefficients of a certain cusp form of weight $\frac{n}{2}+4$

$$\Rightarrow \frac{a_r}{r^4|\Lambda(r)|}$$
 is small

How to go further, and what is so special with n=9 ?

Theorem

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c>c_n$.

How to go further, and what is so special with n=9 ?

Theorem

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c>c_n$.

 $\mathbf{0}$ get explicit c_n , as small as possible.

How to go further, and what is so special with n=9 ?

Theorem

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c > c_n$.

- $\mathbf{0}$ get explicit c_n , as small as possible.
- 2 use formal duality (if any...) and "Poisson summation formula" to exchange c and 1/c.

How to go further, and what is so special with n = 9 ?

Theorem

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c > c_n$.

- \bullet get explicit c_n , as small as possible.
- 2 use formal duality (if any...) and "Poisson summation formula" to exchange c and 1/c.

For n = 9, step **1** requires the actual computation of a basis for a certain space of cusp forms of weight 9/2 and the expansion of a certain theta series with spherical coefficients on this basis \rightsquigarrow doable, in principle (hard).

How to go further, and what is so special with n = 9 ?

Theorem

Let n be an odd integer ≥ 9 . Then there exists a constant c_n such that D_n^+ is locally f_c -optimal for any $c > c_n$.

- \bullet get explicit c_n , as small as possible.
- 2 use formal duality (if any...) and "Poisson summation formula" to exchange c and 1/c.

For n = 9, step **1** requires the actual computation of a basis for a certain space of cusp forms of weight 9/2 and the expansion of a certain theta series with spherical coefficients on this basis \rightsquigarrow doable, in principle (hard).

As for step 2 it does not really make sens in general, since there is no Poisson formula...but D_9^+ is formally self-dual!