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I A lattice L ⊂ Rn is a closed discrete subgroup of finite
covolume, i.e.

L = Ze1 ⊕ · · · ⊕ Zen

where e1, . . . , en are linearly independent vectors.

I A periodic set Λ ⊂ Rn is a closed discrete subset which is
invariant under translations by a lattice L :

Λ + L = Λ.

⇔ ∃ a lattice L and vectors t1, . . . , tm in Rn, pairwise
incongruent mod L, such that

Λ =
m⋃
i=1

(ti + L)

In that case we say that Λ is m-periodic.
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A given periodic set Λ admits infinitely many period lattices and
representations Λ =

⋃m
i=1 (ti + L), in which the number m = |Λ/L|

varies, but not the point density :

pδ(Λ) :=
m√
det L

"number of points per unit volume of space".

For instance one can replace L by any of its sublattice L′ and
obtain a representation as a union of m [L : L′] translates of L′



All period lattices are contained in

Lmax := {v ∈ Rn | v + Λ = Λ} .

 "primitive representation"

Λ =
⋃

x∈Λ/Lmax

(x + Lmax)

as a union of m(Λ) := |Λ/Lmax | translates of Lmax .
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Local maxima of packing density

I Lattice packings : Voronoi theory (1907).
• Local maxima sit at the vertices of the Ryshkov polyhedron.
• Algorithm to enumerate the vertices.

I Periodic packings :
• Schürmann (2004) : characterization of the local maxima.
• Andreanov-Kallus(2017) : refinement in the case of 2-periodic
sets + algorithm to enumerate the vertices.



Energy of periodic sets

Reminder : the energy of a finite configuration of points C in Rn

w.r.t. a potential f is given by

E (f , C) =
1
|C|

∑
x ,y∈C,x 6=y

f (|x − y |2).

Extending this definition of the energy to a general (infinite,
unbounded) collection Λ of points in the Euclidean space, entails
convergence problems.
A natural idea is to set

E (f ,Λ) := lim
R→∞

E (f ,ΛR)

where ΛR := Λ ∩ B(0,R)
 well-defined if Λ is periodic.
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Energy of periodic sets

Cohn and Kumar (2007) define the energy of a m-periodic set
Λ =

⋃m
i=1 (ti + L) with respect to a potential f as

E (f ,Λ) =
1
m

∑
1≤i ,j≤m

∑
w∈L

w+tj−ti 6=0

f (|w + tj − ti |2)

=
1
m

m∑
i=1

∑
u∈Λ\{ti}

f (|u − ti |2)

Fact : for a rapidly decreasing f , this agrees with the previous
definition, namely lim

R→∞
E (f ,ΛR) exists and equals E (f ,Λ).

Recall : ΛR := Λ ∩ B(0,R).



Comments
The definition of the energy as

E (f ,Λ) = lim
R→∞

1
|ΛR |

∑
x ,y∈ΛR ,x 6=y

f (|x − y |2)

involves only the set

”Λ− Λ” := {x − y , x ∈ Λ, y ∈ Λ} .

(no reference to a period lattice)

I If Λ is a lattice (m = 1), then Λ− Λ = Λ (group structure).

I For m > 1, we lose the group structure.
I Not too bad if m = 2 :

Λ = L ∪ (t + L) ⇒ Λ− Λ = Λ ∪ (−Λ).

I Definitely more complicated if m > 2.
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Automorphisms

The natural automorphisms to consider for a periodic set Λ are its
affine isometries

IsomΛ ⊃ Lmax

AutΛ := IsomΛ/Lmax

If 0 ∈ Λ, then

AutΛ ⊃ Aut0 Λ = {ϕ ∈ Aut Lmax | ϕ(Λ) = Λ} .
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Universal optimality

Λ =
⋃m

i=1 (ti + L), E (f ,Λ) = 1
m

∑
1≤i ,j≤m

∑
w∈L

w+tj−ti 6=0

f (|w + tj − ti |2)

For the potential f , we restrict to completely monotonic functions,
that is, real-valued, C∞ on (0,∞), and such that

∀k ≥ 0,∀x ∈ (0,∞), (−1)k f (k)(x) ≥ 0.

The class of completely monotonic functions contains all the
“reasonable functions” in the context of energy minimization, e.g. :

I inverse power laws ps(r) = r−s with s > 0,
I Gaussian potentials fc(r) = e−cr with c > 0

Definition
Λ is universally optimal if it minimizes E (fc ,Λ) for any c > 0.
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Cohn and Kumar conjecture

Conjecture (Cohn-Kumar (2007))

The lattices A2, D4, E8 and Λ24 are universally optimal.

I true locally when restricted to lattice configurations (Sarnak
and Strömbergsson 2006).

I extended to periodic configurations (C., Schürmann, 2012).
More precisely : a lattice, all the shells of which are 4-designs,
is locally fc-optimal among periodic sets for big enough c (+
explicit treshold).
All known examples of universally optimal (proven or
conjectured) lattices share this rather strong property. Can
one weaken this condition ?

I The conjecture has been proved recently for E8 and Λ24 by
Cohn, Kumar, Miller, Radchenko and Viazovska.
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A non lattice example : D+
n .

Dn =
{
x = (x1, . . . , xn) ∈ Zn |

∑
xi ≡ 0 mod 2

}

D+
n = Dn ∪ (e + Dn) where e = (

1
2
,
1
2
, · · · , 1

2
).

It is a lattice if n is even, otherwise a 2-periodic set.

Cohn, Kumar, Schürmann : experimental study suggest that D+
9 is

universally optimal.
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Local deformations

Pm = the set of m-periodic sets in Rn

P =
⋃
m≥1

Pm

Each Pm is a manifold, and for each fixed potential f , one has to
study the local optima of a function

Λ 7→ E (f ,Λ)

 gradient, Hessian.

We say that Λ is f -critical if the gradient of the above map
vanishes at Λ.
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Necessary conditions for universal optimality
Let S be a sphere in Rn centered at 0.

Definition
A finite set D ⊂ S is a weighted spherical design of strength t if
there exists a function ν : D → (0,∞) such that for all polynomial
of degree ≤ t one has

1
Vol(S)

∫
S

P(x)dx =
1

ν(D)

∑
x∈D

ν(x)P(x).

where ν(D) =
∑

x∈D ν(x).

If t = 1 and ν ≡ 1, this reduces to the condition that∑
x∈D

x = 0

which we refer to in the sequel as D being a balanced set.
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First order condition (gradient)
For x ∈ Λ and r > 0 we define

Λx(r) = {y − x | ‖y − x‖ = r , y ∈ Λ} "pointed shell"

and we set Λ(r) =
⋃

x∈Λ Λx(r).

Theorem (C., Schürmann (2017))

A periodic set Λ in Rn is fc-critical for all c > 0 if and only if the
following two conditions are satisfied :

1 All non-empty pointed shells Λx(r) for x ∈ Λ and r > 0 are
balanced.

2 All non-empty shells Λ(r) for r > 0 are weighted spherical
2-designs with respect to the following weight ν :

ν(w) =
1
m
|{i | w ∈ Λti}| .
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Proposition
If the automorphism group of Λ acts R-irreducibly, then Λ is
fc-critical for any c > 0.

Proof.

1 A weighted set (D, ν) on a sphere of radius r in Rn is a
weighted spherical 2-design if and only if∑

x∈D

ν(x)x = 0 and
∑
x∈D

ν(x)xx t = c In

for some constant c .
2 A real representation of a finite group G is irreducible if and
only if dimR(Sym2V )G = 1.

3 Apply this to D = G · x0 for any x0 :

• R(
∑

x∈D ν(x)x) is G -stable ⇒
∑

x∈D ν(x)x = 0.
•
∑

x∈D ν(x)xx t ∈ (Sym2V )G ⇒
∑

x∈D ν(x)xx t = cId .
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Second order condition (Hessian)

hessE (fc ,Λ) =
∑
r>0

I (c , r)e−cr
2

where I (c , r) is a complicated expression involving all the elements
of Λ(r)

 want to show that all the I (c , r) are > 0 for big enough c .

I m = 1 : C., Schürmann (2012)
I For general m-periodic sets, the local analysis seems out of

reach.
I For m = 2 the problem subdivides into 3 parts :

1 "Purely translational part".
2 "Mixed part".
3 "Lattice part".
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In the case of D+
n , we obtain :

Theorem (C., Schürmann (2017))

Let n be an odd integer ≥ 9. Then there exists a constant cn such
that D+

n is locally fc-optimal for any c > cn.

In the computation of the "lattice part" of the Hessian for D+
N , one

has to estimate the quantities

Zr =
∑

w∈Λ(r)

(
n∑

i=1

w 4
i

)
.

Set ar := Zr −
3

n + 2
r 4|Λ(r)|.

Fact : the ar are the Fourier coefficients of a certain cusp form
of weight

n

2
+ 4

⇒ ar
r 4|Λ(r)|

is small
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How to go further, and what is so special with n = 9 ?

Theorem
Let n be an odd integer ≥ 9. Then there exists a constant cn such
that D+

n is locally fc-optimal for any c > cn.

1 get explicit cn, as small as possible.

2 use formal duality (if any...) and "Poisson summation
formula" to exchange c and 1/c .

For n = 9, step 1 requires the actual computation of a basis for a
certain space of cusp forms of weight 9/2 and the expansion of a
certain theta series with spherical coefficients on this basis  
doable, in principle (hard).
As for step 2 it does not really make sens in general, since there is
no Poisson formula...but D+

9 is formally self-dual !
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